Adaptive Kernel Smoothing Regression for Spatio-Temporal Environmental Datasets

نویسندگان

  • Federico Montesino-Pouzols
  • Amaury Lendasse
چکیده

This paper describes a method for performing kernel smoothing regression in an incremental, adaptive manner. A simple and fast combination of incremental vector quantization with kernel smoothing regression using adaptive bandwidth is shown to be effective for online modeling of environmental datasets. The method is illustrated on openly available datasets corresponding to the Tropical Atmosphere Ocean array and the Helsinki Commission hydrographic database for the Baltic Sea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN ADDITIVE MODEL FOR SPATIO-TEMPORAL SMOOTHING OF CANCER MORTALITY RATES

In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite ...

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

Adaptive spherical Gaussian kernel in sparse Bayesian learning framework for nonlinear regression

Kernel based machine learning techniques have been widely used to tackle problems of function approximation and regression estimation. Relevance vector machine (RVM) has state of the art performance in sparse regression. As a popular and competent kernel function in machine learning, conventional Gaussian kernel has unified kernel width with each of basis functions, which make impliedly a basic...

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

TO APPEAR IN SPECIAL ISSUE: ADVANCES IN KERNEL-BASED LEARNING FOR SIGNAL PROCESSING IN THE IEEE SIGNAL PROCESSING MAGAZINE 1 Spatio-Temporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing

Gaussian process based machine learning is a powerful Bayesian paradigm for non-parametric non-linear regression and classification. In this paper, we discuss connections of Gaussian process regression with Kalman filtering, and present methods for converting spatio-temporal Gaussian process regression problems into infinite-dimensional state space models. This formulation allows for use of com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2011